# Dice #tlapmath

Standard

Well, @druinok shared this amazing find from Dollar Tree!

First of all, let me just say, JEALOUS!  But soon after, she shared an idea from #tlapmath Walk the Plank ideas to make lessons Pirate-Worthy.  So, being on the road home from a visit to my brother’s near St Louis, I had plenty of time to think. Hmmmm.

Here are a couple of  thoughts.

Roll the dice, generate 3 sets of coordinates.  Prove what type of triangle they form.  Find the perimeter.

OR roll 6 sets of coordinates.  Which triangle is “closest to being equilateral”?

In a group, compare your quadrilaterals.  Who has the one closest to being a square? Rectangle? Or other polygon. Why?

Use your 8 coorindates and can you arrange (x,y) pairs to create quadilateral closest to _____?

# #Made4Math Monday – Parallelogram Foldable

Standard

Its been a while since I’ve sumbitted #made4math Monday post.  I really like the idea of foldables – a kinesthetic graphic organizer…I believe they have a positive impact on student learning when used purposefully.

This one (found here parallelogram foldable) for parallelograms, rectangle, square and rhombus.  I wanted a foldable that somehow showed all were all in the parallelogram family, but still kept them separate – I chose a trifold.

When I saw an example of the tri-cut Venn Diagram, I knew I wanted to incorporate it somehow to show squares as the overlap of rectangle and rhombus.  This picture does not show the cuts between rectangle/square and square/rhombus, but I think its visible in the last picture.

The file is simply the skeleton, please feel free to make it your own (ha, just don’t go selling it as your own!)

I am still debating what should go in the center – thinking of examples / non-examples.   Possibly even giving students a couple of example problems using properties of quadrilaterals.  Istuck area formulas in at the last second – but think it may be more effective to let students discover area of a rhombus on the own.  Suggestions are always welcome!